

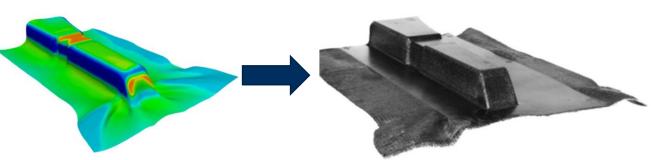
Forming of Aligned Discontinuous Fibre Thermoplastic Prepreg for Sustainable Composite Manufacturing

Burak Ogun Yavuz

Supervisors: Jonathan Belnoue, Marco Longana, Ian Hamerton

BCI PGR Symposium

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing



Forming of Thermoplastic Short Fibre Prepreg

- Problems
 - Sustainable solutions are needed
 - Thermoplastic composite manufacturing is very hard with standard methods
 - Forming of defect free composite parts depends on experience and trials

Aim: Development of forming simulation tool for manufacturing of thermoplastic HiPerDiF

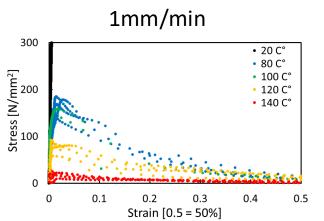
tapes

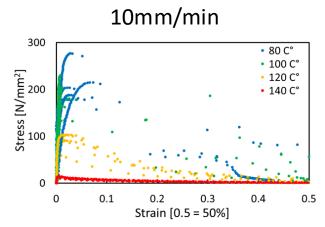
Guzman-Maldonado, E., Hamila, N., Naouar, N., Moulin, G., & Boisse, P. (2016). Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Materials & Design, 93, 431-442.

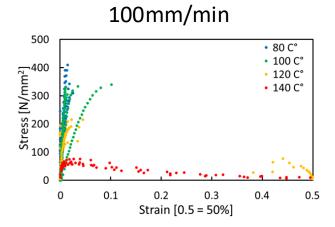
		common node	S
Flomont Tymo	Tr	Tr.	

Element Type	$\mathbf{E_1}$	$\mathbf{E_2}$	G_{12}
	[MPa]	[MPa]	[MPa]
Membrane	?	?	?
Shell	?	?	?

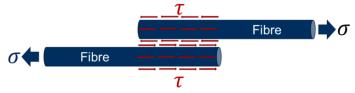
Thompson, A. J., Belnoue, J. P., & Hallett, S. R. (2020). Modelling defect formation in textiles during the double diaphragm forming process. Composites Part B: Engineering, 202, 108357. doi:10.1016/j.compositesb.2020.108357

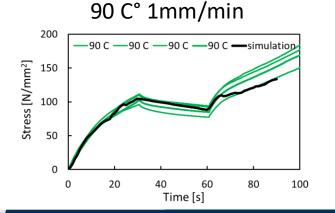


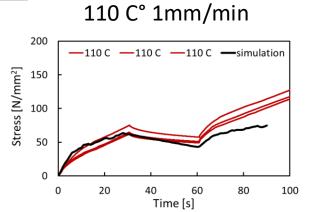




Tensile Characterisation under Processing Condition

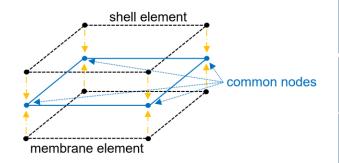


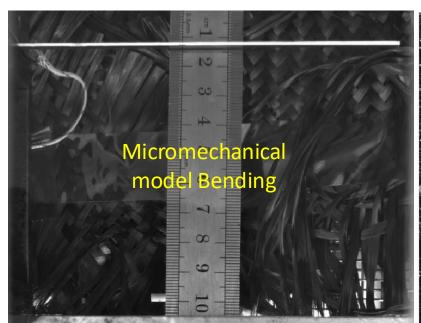

Higher temperatures diminish the matrix properties, thereby reducing load-carrying capacity, whereas higher speeds enhance them

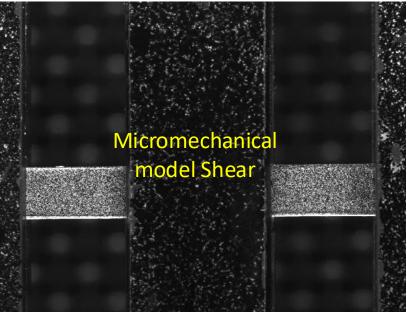

Model derivation, implementation and validation

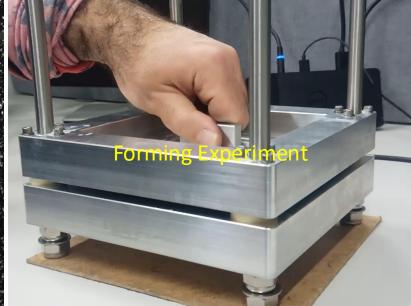
Micromechanical model

$$\dot{\sigma} = \left(2G(\dot{\varepsilon})\left(\frac{L-\delta}{D}[K-1]f\frac{\delta}{D}\right)\dot{\varepsilon} - \left(\frac{G(\dot{\varepsilon})}{\eta(\dot{\varepsilon})}\right)\sigma\right)$$








Process Simulation

Element	E ₁	E ₂	G ₁₂	Density
Туре	[MPa]	[MPa]	[MPa]	[tonne/mm³]
Membrane	Micromechanical	Modulus at	Micromechanical	7.13E-05
	model Tension	each temp.	model Shear	
Shell	Micromechanical	1	0	7.13E-05
	model Bending			

Thanks for listening! Any questions?

ogun.yavuz@bristol.ac.uk

<u>Acknowledgements</u>

Supervisors: Jonathan Belnoue, Marco Longana, Ian Hamerton

Funded by the Republic of Türkiye Ministry of National Education

Supported by Physical Sciences Research Council (EPSRC) (grant no. EP/S021728/1) and Simulation of New Manufacturing Processes for Composite Structures (SIMPROCS) (grant no. EP/P027350/1)

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

